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Recap of Last Course
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GDT or LDT
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number
+
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base addr

Interrupt Procedure
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• Interrupt stack (中断栈) is a special stack in kernel memory that
saves the interrupt process status.
- Empty when there is no interrupt (running in user space)

- Why not directly use the user-space stack?

• Disable interrupts and enable interrupts are two privileged
instructions
- Maskable interrupts (可屏蔽中断): all software interrupts, all system

calls, and partial hardware exceptions

- Non-maskable interrupts (NMI，不可屏蔽中断): partial hardware
exceptions

- Specified by eflags registers

Recap of Last Course
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• User-to-Kernel Mode Switch
- Exception

- Interrupts

- Syscalls

• Kernel-to-User Mode Switch
- New process

- Resume after an interrupt/exception/syscall

- Switch to a different process
❑After a timer interrupt

- User-level upcall

Recap of Last Course
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• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt StackUser Stack

Before interrupt
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• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

At the beginning of handler

SS:ESP

EFLAGS

CS:EIP

Error
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• When an interrupt/exception/syscall occurs, the OS will:

x86 Mode Transfer

1. Save the rest of the interrupted

process’s state

• pusha/pushad

2. Executes the handler

3. Resume the interrupted process

• popa/popad + pop error

code

4. Resume the interrupted process

• iret

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

During interrupt handler

SS:ESP

EFLAGS

CS:EIP

Error

…

EBX

EAX
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• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer
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• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer
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• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today
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• Process management

• Input/output

• Thread management

• Memory management

• File systems and storage

• Networking

• Graphics and window management

• Authentication and security

OS Functions to Apps
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OS System Calls
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• Portable Operating System
Interface (POSIX)
- A standard for UNIX OSes,

especially its system calls

• libc: overview of standard C 
libraries
- POSIX APIs like getpid() + standard 

C functions like strcpy()

- Apps do not directly invoke syscalls

- glibc: GNU C library

• If a software is written with only
dependency to libc, it has good
portability across OSes/hardware

POSIX and libc
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POSIX and libc
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POSIX and libc

https://en.wikipedia.org/wiki/POSIX
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POSIX and libc

Linux, MacOS, Windows

Linux
MacOS, Windows

• gettid: Linux-specific function

Linux, MacOS
Windows

• Unistd.h: Unix standard header

This is for compilation level.What if

they are already compiled..?
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• Flexibility

• Safety

• Reliability

• Performance

The Design Considerations

https://www.oilshell.org/blog/2022/03/backlog-arch.html
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• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today
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• Early motivation: allow developers to write their own shell
command line interpreters

The Need for Multi-process

# shell script

cc –c sourcefile1.c

cc –c sourcefile1.c

ln –o program sourcefile1.o sourcefile2.o
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Boolean CreateProcess(char *prog, char *args)
- Create and initialize the process control block (PCB) in kernel

- Create and initialize a new memory address space

- Load the program prog into the address space

- Copy arguments args into memory in the address space

- Initialize the hardware context to start execution at “start”

- Inform the scheduler that the new process is ready to run

• In reality, it’s a bit more complex
- The parent process (父进程) may specify the child process’s (子进程)

privileges, where it sends its input and output, what it should store its
files, what to use as a scheduling priority, etc.

Process in Windows

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
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• fork() and exec(): the Unix way to create new processes
- Perhaps one of the most controversial design in Unix

fork() in Unix

fork(): create a complete

copy of the parent process,

except the return value:
• 0 for child process

• The PID of child process for

the parent process

exec(): load and execute a

program from disk

Note: exec() does not create a

new process!
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• What actually have fork() and exec() done

fork() in Unix

fork()
1. Create and initialize PCB

2. Create a new address space

3. Copy the entire memory

contents from parent

process to the child

4. Inherit the execution

content of the parent (e.g.,

open files)

5. Inform the scheduler that

new process is ready to run

exec(char *prog, char *args)

1. Load the program prog into

the current address space

2. Copy arguments args into

memory in the address space

3. Initialize the hardware

context to start execution at

“start”
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• A typical example of how fork() and exec() are used

• The memory contents of the child process are copied twice,
would that be a waste?

fork() in Unix
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• exec() is not always necessary
- Opens a new page in Google Chrome

• wait(pid): wait for the child process to finish execution

• signal: terminate, stop, resume a process

fork() in Unix
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Some Simple fork() Quizzes

1. How many “OS” printed?

int main() {
fork();
fork();
fork();
printf(“OS ”);
return 0;

}

3. What is the output
A. I am child, I am parent
B. I am parent, I am child
C. Both are possible

int main() {
int pid = fork();
if (pid == 0) {
printf(“I am child, ”);

} else {
printf(“I am parent, ”);
return 0;

}
}

2. How many “OS” printed?

int main() {
if (fork() || fork())
fork();

printf(“OS ”);
return 0;

}

4. What are the possible
output

int main() {
for (int i = 0; i < 3; 

i += 1) {
pid_t p = fork();
if (p == 0) {

i += 1;
}
printf("%d", i);

}
return 0;

}
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Some Simple fork() Quizzes

1. How many “OS” printed?
• 8

int main() {
fork();
fork();
fork();
printf(“OS ”);
return 0;

}

3. What is the output
A. I am child, I am parent
B. I am parent, I am child
C. Both are possible

int main() {
int pid = fork();
if (pid == 0) {
printf(“I am child, ”);

} else {
printf(“I am parent, ”);
return 0;

}
}

2. How many “OS” printed?
• 5

int main() {
if (fork() || fork())
fork();

printf(“OS ”);
return 0;

}

4. What are the possible
output

int main() {
for (int i = 0; i < 3; 

i += 1) {
pid_t p = fork();
if (p == 0) {

i += 1;
}
printf("%d", i);

}
return 0;

}
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• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today
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• Computer systems have very diverse I/O devices
- Keyboard: individual characters

- Disk: fixed-sized chunks

- Network: stream of variable sized packets

- Mouse: single events

• Having an interface for each device means the OS interface
needs to expand whenever a new device is added..

• Unix has one interface for all of them!
- “Everything is a file” – open, read, write, close

Input/Output in Unix
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• File Descriptor (fd): a number (int) that uniquely identifies an 
open file in a computer's operating system. It describes a data 
resource, and how that resource may be accessed.

File Descriptor in Unix

• Each process has its own file

descriptor table

• A file can be opened multiple times

and therefore associated with many

file descriptors

• More in filesystem courses
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• File Descriptor (fd): a number (int) that uniquely identifies an 
open file in a computer's operating system. It describes a data 
resource, and how that resource may be accessed.

File Descriptor in Unix

ls –l /proc/[pid]/fd
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• Internally, it has everything
about an opened file
- Where it resides

- Its status

- How to access it

- ..

File Descriptor in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

return value: file descriptor or error code (-1)
pathname: could be a file (“/data/readme.txt”) or a
device (“/dev/zero”)

#include <fcntl.h>
int close(int fd); 

return value: 0 (success) or -1 (error)
Note: if fd is the last file descriptor referring to the 
underlying open file description, the resources 
associated with the open file description are freed.
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

#include <fcntl.h>
ssize_t read(int fd, void *buf, size_t count); 

It will read up to count bytes from file descriptor fd 
into the buffer starting at buf.
return value: the number of bytes read or error (-1)

#include <fcntl.h>
ssize_t write(int fd, const void *buf, size_t count); 

It will write up to count bytes from the buffer starting 
at buf to the file referred to by the file descriptor fd.
return value: the number of bytes written or -1 (error)
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use
❑ OS can check permission and do bookkeeping

Input/Output in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented
❑ Even if blocks are transferred, addressing is in bytes

Input/Output in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented

- Kernel-buffered reads/writes
❑ Streaming and block devices looks the same

❑ Read blocks process, yielding processor to other task

❑ Write does not block (even if it’s faster than device receiving data)

Input/Output in Unix
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• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented

- Kernel-buffered reads/writes

- Explicit close
❑ Garbage collection of unused kernel data structures

Input/Output in Unix
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• Extending the interface to inter-process communication
- Pipes: a kernel buffer with two file descriptors (reading and

writing)

- Replace file descriptor for the child process
❑ Often used in shells

- Wait for multiple reads

Input/Output in Unix
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• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today
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• An illusion that kernel is simply a set of library routines
- Actually, it’s not.. They are not even in the same context!

- Names, arguments, return values

• A key challenge: protection from user-space errors
- What are to be checked?

System Calls
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System Calls Stubs

User Program

Main () {

open(arg1, arg2)

}

User Stub

file_open () {

push #SYSCALL_OPEN

trap

return

}

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

Kernel

file_open () {

// do the real operation

}

1

2 Hardware trap

34

5

6

Trap return
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System Calls Stubs

User Stub

file_open () {

push #SYSCALL_OPEN

trap

return

}

In x86:

open:

// Put the code for the syscall we want into %eax

movl #SysCallOpen, %eax

//Trap into the kernel

int #TrapCode

// Return to the caller; the kernel puts the return value in

%eax already

ret
The int instruction:

• Saves the program counter, stack pointer,

and eflags on the kernel stack

• Jumps to the system call handler through

interrupt vector table

• The kernel handler examines the

TrapCode and calls the correct stub
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System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?

• Why parameters must be copied from

user memory to kernel memory?

• Can we check parameters before

copying them to kernel memory?

https://developer.ibm.com/articles/l-kernel-memory-access/
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System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?
- Yes in most OSes, because kernel and

user share memory space

• Why parameters must be copied from

user memory to kernel memory?
- Original parameters are stored in user

memory stack

- copy_from_user and copy_to_usr

• Can we check parameters before

copying them to kernel memory?
- time of check vs. time of use (TOCTOU)

attack

https://developer.ibm.com/articles/l-kernel-memory-access/
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• Measure context switch overhead.
- Checkout the website at https://buptos.github.io/homework.html

Homework

https://buptos.github.io/homework.html
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