
Operating Systems

Lecture 4

OS Interfaces and Syscalls

Prof. Mengwei Xu

9/27/2024 Mengwei Xu @ BUPT Fall 2

Recap of Last Course

Gate

Segment Descriptor

IDT

GDT or LDT

IDTR

Interrupt

number
+

offset

base addr

Interrupt Procedure

9/27/2024 Mengwei Xu @ BUPT Fall 3

• Interrupt stack (中断栈) is a special stack in kernel memory that
saves the interrupt process status.
- Empty when there is no interrupt (running in user space)

- Why not directly use the user-space stack?

• Disable interrupts and enable interrupts are two privileged
instructions
- Maskable interrupts (可屏蔽中断): all software interrupts, all system

calls, and partial hardware exceptions

- Non-maskable interrupts (NMI，不可屏蔽中断): partial hardware
exceptions

- Specified by eflags registers

Recap of Last Course

9/27/2024 Mengwei Xu @ BUPT Fall 4

• User-to-Kernel Mode Switch
- Exception

- Interrupts

- Syscalls

• Kernel-to-User Mode Switch
- New process

- Resume after an interrupt/exception/syscall

- Switch to a different process
❑After a timer interrupt

- User-level upcall

Recap of Last Course

9/27/2024 Mengwei Xu @ BUPT Fall 5

• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt StackUser Stack

Before interrupt

9/27/2024 Mengwei Xu @ BUPT Fall 6

• When an interrupt/exception/syscall occurs, the hardware will:

x86 Mode Transfer

1. Mask interrupts

2. Save the special register values

to other temporary registers

3. Switch onto the kernel

interrupt stack

4. Push the three key values onto

the new stack

5. Optionally save an error code

6. Invoke the interrupt handler

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

At the beginning of handler

SS:ESP

EFLAGS

CS:EIP

Error

9/27/2024 Mengwei Xu @ BUPT Fall 7

• When an interrupt/exception/syscall occurs, the OS will:

x86 Mode Transfer

1. Save the rest of the interrupted

process’s state

• pusha/pushad

2. Executes the handler

3. Resume the interrupted process

• popa/popad + pop error

code

4. Resume the interrupted process

• iret

CS:EIP

SS:ESP

EFLAGS

Others:

EAX, EBX..

foo() {

x = x + 1;

y = x + 2;

…

}

User-space process Registers

handler() {

pushad;

…

}

Kernel

Interrupt Stack

User Stack

During interrupt handler

SS:ESP

EFLAGS

CS:EIP

Error

…

EBX

EAX

9/27/2024 Mengwei Xu @ BUPT Fall 8

• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer

9/27/2024 Mengwei Xu @ BUPT Fall 9

• Who modifies the CPL (2 bits in CS)? Instructions like:
- int/SYSCALL

- iret

x86 Mode Transfer

9/27/2024 Mengwei Xu @ BUPT Fall 10

• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today

9/27/2024 Mengwei Xu @ BUPT Fall 11

• Process management

• Input/output

• Thread management

• Memory management

• File systems and storage

• Networking

• Graphics and window management

• Authentication and security

OS Functions to Apps

9/27/2024 Mengwei Xu @ BUPT Fall 12

OS System Calls

9/27/2024 Mengwei Xu @ BUPT Fall 13

• Portable Operating System
Interface (POSIX)
- A standard for UNIX OSes,

especially its system calls

• libc: overview of standard C
libraries
- POSIX APIs like getpid() + standard

C functions like strcpy()

- Apps do not directly invoke syscalls

- glibc: GNU C library

• If a software is written with only
dependency to libc, it has good
portability across OSes/hardware

POSIX and libc

9/27/2024 Mengwei Xu @ BUPT Fall 14

POSIX and libc

9/27/2024 Mengwei Xu @ BUPT Fall 15

POSIX and libc

https://en.wikipedia.org/wiki/POSIX

9/27/2024 Mengwei Xu @ BUPT Fall 16

POSIX and libc

Linux, MacOS, Windows

Linux
MacOS, Windows

• gettid: Linux-specific function

Linux, MacOS
Windows

• Unistd.h: Unix standard header

This is for compilation level.What if

they are already compiled..?

9/27/2024 Mengwei Xu @ BUPT Fall 19

• Flexibility

• Safety

• Reliability

• Performance

The Design Considerations

https://www.oilshell.org/blog/2022/03/backlog-arch.html

9/27/2024 Mengwei Xu @ BUPT Fall 20

• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today

9/27/2024 Mengwei Xu @ BUPT Fall 21

• Early motivation: allow developers to write their own shell
command line interpreters

The Need for Multi-process

shell script

cc –c sourcefile1.c

cc –c sourcefile1.c

ln –o program sourcefile1.o sourcefile2.o

9/27/2024 Mengwei Xu @ BUPT Fall 22

Boolean CreateProcess(char *prog, char *args)
- Create and initialize the process control block (PCB) in kernel

- Create and initialize a new memory address space

- Load the program prog into the address space

- Copy arguments args into memory in the address space

- Initialize the hardware context to start execution at “start”

- Inform the scheduler that the new process is ready to run

• In reality, it’s a bit more complex
- The parent process (父进程) may specify the child process’s (子进程)

privileges, where it sends its input and output, what it should store its
files, what to use as a scheduling priority, etc.

Process in Windows

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

9/27/2024 Mengwei Xu @ BUPT Fall 23

• fork() and exec(): the Unix way to create new processes
- Perhaps one of the most controversial design in Unix

fork() in Unix

fork(): create a complete

copy of the parent process,

except the return value:
• 0 for child process

• The PID of child process for

the parent process

exec(): load and execute a

program from disk

Note: exec() does not create a

new process!

9/27/2024 Mengwei Xu @ BUPT Fall 24

• What actually have fork() and exec() done

fork() in Unix

fork()
1. Create and initialize PCB

2. Create a new address space

3. Copy the entire memory

contents from parent

process to the child

4. Inherit the execution

content of the parent (e.g.,

open files)

5. Inform the scheduler that

new process is ready to run

exec(char *prog, char *args)

1. Load the program prog into

the current address space

2. Copy arguments args into

memory in the address space

3. Initialize the hardware

context to start execution at

“start”

9/27/2024 Mengwei Xu @ BUPT Fall 25

• A typical example of how fork() and exec() are used

• The memory contents of the child process are copied twice,
would that be a waste?

fork() in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 26

• exec() is not always necessary
- Opens a new page in Google Chrome

• wait(pid): wait for the child process to finish execution

• signal: terminate, stop, resume a process

fork() in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 27

Some Simple fork() Quizzes

1. How many “OS” printed?

int main() {
fork();
fork();
fork();
printf(“OS ”);
return 0;

}

3. What is the output
A. I am child, I am parent
B. I am parent, I am child
C. Both are possible

int main() {
int pid = fork();
if (pid == 0) {
printf(“I am child, ”);

} else {
printf(“I am parent, ”);
return 0;

}
}

2. How many “OS” printed?

int main() {
if (fork() || fork())
fork();

printf(“OS ”);
return 0;

}

4. What are the possible
output

int main() {
for (int i = 0; i < 3;

i += 1) {
pid_t p = fork();
if (p == 0) {

i += 1;
}
printf("%d", i);

}
return 0;

}

9/27/2024 Mengwei Xu @ BUPT Fall 28

Some Simple fork() Quizzes

1. How many “OS” printed?
• 8

int main() {
fork();
fork();
fork();
printf(“OS ”);
return 0;

}

3. What is the output
A. I am child, I am parent
B. I am parent, I am child
C. Both are possible

int main() {
int pid = fork();
if (pid == 0) {
printf(“I am child, ”);

} else {
printf(“I am parent, ”);
return 0;

}
}

2. How many “OS” printed?
• 5

int main() {
if (fork() || fork())
fork();

printf(“OS ”);
return 0;

}

4. What are the possible
output

int main() {
for (int i = 0; i < 3;

i += 1) {
pid_t p = fork();
if (p == 0) {

i += 1;
}
printf("%d", i);

}
return 0;

}

9/27/2024 Mengwei Xu @ BUPT Fall 29

• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today

9/27/2024 Mengwei Xu @ BUPT Fall 30

• Computer systems have very diverse I/O devices
- Keyboard: individual characters

- Disk: fixed-sized chunks

- Network: stream of variable sized packets

- Mouse: single events

• Having an interface for each device means the OS interface
needs to expand whenever a new device is added..

• Unix has one interface for all of them!
- “Everything is a file” – open, read, write, close

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 31

• File Descriptor (fd): a number (int) that uniquely identifies an
open file in a computer's operating system. It describes a data
resource, and how that resource may be accessed.

File Descriptor in Unix

• Each process has its own file

descriptor table

• A file can be opened multiple times

and therefore associated with many

file descriptors

• More in filesystem courses

9/27/2024 Mengwei Xu @ BUPT Fall 32

• File Descriptor (fd): a number (int) that uniquely identifies an
open file in a computer's operating system. It describes a data
resource, and how that resource may be accessed.

File Descriptor in Unix

ls –l /proc/[pid]/fd

9/27/2024 Mengwei Xu @ BUPT Fall 33

• Internally, it has everything
about an opened file
- Where it resides

- Its status

- How to access it

- ..

File Descriptor in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 34

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

return value: file descriptor or error code (-1)
pathname: could be a file (“/data/readme.txt”) or a
device (“/dev/zero”)

#include <fcntl.h>
int close(int fd);

return value: 0 (success) or -1 (error)
Note: if fd is the last file descriptor referring to the
underlying open file description, the resources
associated with the open file description are freed.

9/27/2024 Mengwei Xu @ BUPT Fall 35

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

#include <fcntl.h>
ssize_t read(int fd, void *buf, size_t count);

It will read up to count bytes from file descriptor fd
into the buffer starting at buf.
return value: the number of bytes read or error (-1)

#include <fcntl.h>
ssize_t write(int fd, const void *buf, size_t count);

It will write up to count bytes from the buffer starting
at buf to the file referred to by the file descriptor fd.
return value: the number of bytes written or -1 (error)

9/27/2024 Mengwei Xu @ BUPT Fall 36

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 37

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 38

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use
❑ OS can check permission and do bookkeeping

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 39

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented
❑ Even if blocks are transferred, addressing is in bytes

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 40

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented

- Kernel-buffered reads/writes
❑ Streaming and block devices looks the same

❑ Read blocks process, yielding processor to other task

❑ Write does not block (even if it’s faster than device receiving data)

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 41

• A uniform interface for all I/O
- Uniformity: open, close, read, and write

- Open before use

- Byte-oriented

- Kernel-buffered reads/writes

- Explicit close
❑ Garbage collection of unused kernel data structures

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 42

• Extending the interface to inter-process communication
- Pipes: a kernel buffer with two file descriptors (reading and

writing)

- Replace file descriptor for the child process
❑ Often used in shells

- Wait for multiple reads

Input/Output in Unix

9/27/2024 Mengwei Xu @ BUPT Fall 43

• OS Programming Interface

• Case Study: Process Management

• Case Study: Input/Output

• System Calls Design

Goals for Today

9/27/2024 Mengwei Xu @ BUPT Fall 44

• An illusion that kernel is simply a set of library routines
- Actually, it’s not.. They are not even in the same context!

- Names, arguments, return values

• A key challenge: protection from user-space errors
- What are to be checked?

System Calls

9/27/2024 Mengwei Xu @ BUPT Fall 45

System Calls Stubs

User Program

Main () {

open(arg1, arg2)

}

User Stub

file_open () {

push #SYSCALL_OPEN

trap

return

}

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

Kernel

file_open () {

// do the real operation

}

1

2 Hardware trap

34

5

6

Trap return

9/27/2024 Mengwei Xu @ BUPT Fall 46

System Calls Stubs

User Stub

file_open () {

push #SYSCALL_OPEN

trap

return

}

In x86:

open:

// Put the code for the syscall we want into %eax

movl #SysCallOpen, %eax

//Trap into the kernel

int #TrapCode

// Return to the caller; the kernel puts the return value in

%eax already

ret
The int instruction:

• Saves the program counter, stack pointer,

and eflags on the kernel stack

• Jumps to the system call handler through

interrupt vector table

• The kernel handler examines the

TrapCode and calls the correct stub

9/27/2024 Mengwei Xu @ BUPT Fall 47

System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?

• Why parameters must be copied from

user memory to kernel memory?

• Can we check parameters before

copying them to kernel memory?

https://developer.ibm.com/articles/l-kernel-memory-access/

9/27/2024 Mengwei Xu @ BUPT Fall 48

System Calls Stubs

Kernel Stub

file_open_handler () {

copy_args_from_user()

check_args()

file_open(arg1, arg2)

copy_ret_to_user()

return

}

• Can kernel directly access the

parameters without copying?
- Yes in most OSes, because kernel and

user share memory space

• Why parameters must be copied from

user memory to kernel memory?
- Original parameters are stored in user

memory stack

- copy_from_user and copy_to_usr

• Can we check parameters before

copying them to kernel memory?
- time of check vs. time of use (TOCTOU)

attack

https://developer.ibm.com/articles/l-kernel-memory-access/

9/27/2024 Mengwei Xu @ BUPT Fall 49

• Measure context switch overhead.
- Checkout the website at https://buptos.github.io/homework.html

Homework

https://buptos.github.io/homework.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

